生物統計實習 two-way ANOVA

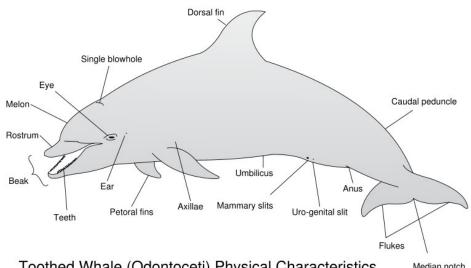
噗噗噗

第六組

B935020011 桂德豪

B935020013 郭亮鈞

B935020021 翁偉然


B935020036 方士碩

一. 前言:

前陣子有海豚擱淺,我們到四草去當志工,素有海中精靈之稱的海豚是哺乳 類,用肺呼吸,我們想知道海豚在早晚以及進食前後呼吸頻率是否和人類一樣有 改變,於是想利用 two-way ANOVA 進行測試。

二. 目的:

- 練習使用 two-way ANOVA
- 測試海豚在不同時間以及進食前後呼吸頻率是否有改變

Toothed Whale (Odontoceti) Physical Characteristics

Median notch

圖一·齒鯨(海豚)構造圖

三. 採樣方法:

- 海豚進食前20分鐘以及進食後10分鐘,分別以馬錶計算兩次海豚呼吸的時 間間距,各得40個數據
- 11:30 以及 16:30 各進行一次實驗
- 海豚進食的量以及魚種相同
- 環境因子如水溫、鹽度等皆相同
- 餵食人相同

四. 原始數據:

	進食前	進食後	進食前	進食後		進食前	進食後	進食前	進食後
1130	20	40	14	12	1630	19	27	23	14
	12	16	27	39		23	12	18	21
	14	21	24	18		16	16	18	10
	16	22	24	19		40	15	29	20
	18	20	6	20		15	16	21	29
	18	29	28	19		17	14	20	22
	16	19	17	15		17	14	17	23
	11	20	17	19		16	13	23	19
	22	18	20	18		20	13	11	28
	27	18	18	5		23	18	24	12
	27	23	16	4		20	18	27	14
	17	35	13	10		20	12	28	29
	13	41	16	22		32	15	18	21
	12	21	29	21		16	13	28	40
	17	17	32	16		19	17	26	20
	15	15	12	22		22	12	19	20
	2	20	23	41		25	22	23	27
	13	16	21	16		7	12	19	31
	12	20	26	20		21	23	22	38
	16	38	24	15		26	17	19	18

五. 數據整理:

	進食前	進食後		
1130	T=841	T=726	T1130=1567	STD1130=7.91
	Y罷=18.15	Y罷=21.025	Y霸1130=19.58	
1630	T=848	T=785	T1630=1633	STD1630=6.51
	Y罷=21.2	Y罷=19.625	Y霸1630=20.21	
	T進食前=1689	T進食後=1511		
	Y霸進時前=19.65	Y罷進食後=20.3	G=3200	Y罷罷=20
	STD進食前=6.26	STD進食後=8.12		

六. 計算過程:

Η0: 1. μ11:30=μ16:30

2. μbm=μam

3. no interaction between time and meal.

Ha: 1. not all means are equal.

2. not all means are equal.

3. interaction between time and meal.

Assumption:

1. normal distribution.

2. random sampling.

3. the same σ_i^2 $\alpha=0.05$

Two-way ANOVA table

			Sum of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	3	250.418750	83.472917	1.63	0.1842
Error	156	7979.52500	51.150801		
Corrected	ļ				
Total	159	8229.943750			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
Time	1	20.3062500	20.3062500	0.40	0.5296 n.s.
Meat	1	11.5562500	11.5562500	0.23	0.6352 n.s.
Time*Me	al 1	218.5562500	218.5562500	4.27	0.0404 *

因為時間不同和進食前後有 interaction,故不可下 main effect, 於是對時間不同以及進食前後分別作 one-way ANOVA

One-way ANOVA table

11:30,進食前後 ANOVA table

		Sum of			
Source	DF	Squares	Mean Square	F Value	e $Pr > F$
Model	1	165.312500	165.312500	2.75	0.1014
Error	78	4692.375000	60.158654		
Corrected Total 79		4857.687500			
Source	DF	Anova SS	Mean Square	F Value	Pr > F
Meat	1	165.3125000	165.3125000	2.75	0.1014

因為 0.1014 > 0.05 ,落於 region of acceptance ,故接受 H0 ,即在 11:30 時海豚進食前後呼吸速率沒有顯著差異

16:30,海豚進食前後 ANOVA table

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	1	64.80	64.8	1.54	0.2187
Error	78	3287.15	42.142949		
Corrected To	otal 79	3351.95			
Source	DF	Anova SS	Mean Square	F Value	Pr > F
Meat	1	64.8	64.8	1.54	0.2187

因為 0.2187 > 0.05,落於 region of acceptance,故接受 H0,即在 16:30 時海豚進食前後呼吸速率沒有顯著差異

進食前,時間不同 ANOVA table

Sum of

Source	DF	Squares	Mean Square	F Value	Pr > F
Model	1	186.05	186.05	5.00	0.0283
Error	78	2904.15	37.232692		
Corrected Total	79	3090.20			
Source	DF	Anova SS	Mean Square	F Value	Pr > F
Time	1	186.05	186.05	5.00	0.0283

因為 0.0283<0.05, 落於 critical region, 故接受 Ha, 即 11:30 與 16:30 海豚進食前呼吸速率有顯著差別

進食後,時間不同 ANOVA table

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Mode	1	52.8125	52.8125	0.81	0.3704
Error	78	5075.375	65.06891		
Corrected Tota	79	5128.1875			
Source	DF	Anova SS	Mean Square	F Value	Pr > F
Time	1	52.8125	52.8125	0.81	0.3704

因為 0.3704>0.05, 落於 region of acceptance, 接受 H0, 即在 11:30 與 16:30 海豚進食後呼吸速率沒有顯著差異

七. 結論:

- Two-way ANOVA: 時間與進食之間有 interaction,故無法下 main effect,分別作 one-way ANOVA。
- One-way ANOVA 結果:
 - 在11:30 時海豚進食前後呼吸速率 沒有顯著差異
 - 在 16:30 時海豚進食前後呼吸速率 沒有顯著差異
 - 在11:30 與16:30 海豚進食前呼吸速率 有顯著差別
 - 在11:30 與16:30 海豚進食後呼吸速率沒有顯著差異
- · 11:30 海豚進食前呼吸頻率為 18.15 秒/次 16:30 海豚進食前呼吸頻率為 21.20 秒/次 得知 11:30 海豚呼吸較為急促

八. 討論:

- 海豚休息時是以半邊腦在休息半邊腦在工作,所以休息時呼吸速率會變慢,故推測下午時海豚在休息,才會得到兩段時間呼吸頻率有明顯差異。
- 進行 paired-T test, Ta>T0.05(>29)=1.645
- 下午的呼吸間隔大於上午
- 觀察海豚眼睛右眼半閉,他真的在休息。
- 進食時海豚會整隻清醒過來,呼吸也會調整,故兩段時間進食後呼吸頻率並無顯著差異。
- 阿布凌晨上岸了。
- 我們要好好愛護海洋。

九. 問題:

- 以非健康的海豚進行實驗並不準確。
- 實驗設計錯誤其,數據無法代表所有海豚,目標族群設定錯誤。